
LLNL-CONF-646258

Accurate Application Progress
Analysis for Large-Scale Parallel
Debugging

S. Mitra, I. Laguna, D. H. Ahn, S. Bagchi, M.
Schulz, T. Gamblin

November 15, 2013

Programming Language Design and Implementation
Edinburgh, United Kingdom
June 9, 2014 through June 11, 2014

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Accurate Application Progress Analysis
for Large-Scale Parallel Debugging

Subrata Mitra†, Ignacio Laguna‡, Dong H. Ahn‡, Saurabh Bagchi†, Martin Schulz‡, Todd Gamblin‡

†Purdue University ‡Lawrence Livermore National Laboratory

{mitra4, sbagchi}@purdue.edu {ilaguna, ahn1, schulzm, tgamblin}@llnl.gov

Abstract

Debugging large-scale parallel applications is challenging. In most
HPC applications, parallel tasks progress in a coordinated fashion,
and thus a fault in one task can quickly propagate to other tasks,
making it difficult to debug. Finding the least-progressed tasks
can significantly reduce the effort to identify the task where the
fault originated. However, existing approaches for detecting them
suffer low accuracy and large overheads; either they use imprecise
static analysis or are unable to infer progress dependence inside
loops. We present a loop-aware progress-dependence analysis tool,
PRODOMETER, which determines relative progress among parallel
tasks via dynamic analysis. Our fault-injection experiments suggest
that its accuracy and precision are over 90% for most cases and that
it scales well up to 16,384 MPI tasks. Further, our case study shows
that it significantly helped diagnosing a perplexing error in MPI,
which only manifested at large scale.

Keywords Parallel debugging, high-performance computing, dy-
namic analysis, MPI

Categories and Subject Descriptors D.2.5 [High Performance
Computing]: Testing and Debugging; D.1.3 [MPI]: Parallel pro-
gramming; D.4.8 [Scientific application]: Performance

General Terms Performance, Algorithms, Reliability, Measure-
ment

1. Introduction

Debugging large-scale parallel applications is a daunting task. The
traditional debugging paradigm [1, 6] of interactively following
the execution of individual lines of source code can easily break
down on the sheer volume of information that must be captured,
aggregated, and analyzed at large scale. Perhaps, more importantly,
even if such approaches were feasible, programmers would be sim-
ply overwhelmed by massively large numbers of threads of con-
trol and program states, which are involved in large-scale parallel
applications. Instead, (semi-)automated data aggregation and re-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

PLDI ’14, June 9-11, 2014, Edinburgh, United Kingdom.
Copyright © 2014 ACM 978-1-4503-2784-8/14/06. . . $15.00.
http://dx.doi.org/10.1145/2594291.2594336

duction techniques offer much more attractive alternatives. For se-
rial programs, several projects including Cooperative Bug Isolation
(CBI) [12, 19] and DIDUCE [23] already target such techniques for
bug detection and identification. However, these techniques cannot
be used to debug large-scale parallel programs since they do not
capture and model communication-related dependencies.

Driven by these challenges, a few recent efforts provide semi-
automated techniques to debug large-scale parallel applications [18,
28]. Their key insight is that, although there is a large number of
tasks in a large-scale application, the number of behavioral equiva-
lence classes is much smaller and does not grow with the scale of
the application (i.e., task counts and input data). These classes are
mostly defined in terms of the control-flow graph of all involved
tasks. These approaches identify the behavioral equivalence classes
and isolate any task, or a small group of tasks, that deviates from
their assigned behavior class.

Hangs and performance slowdowns are common, yet hard-to-
diagnose problems in parallel high-performance computing (HPC)
applications. Due to the tight coupling of tasks, a fault in one
task can quickly spread to other tasks, causing a large number of
tasks, or even the entire application, to hang or to slow down. Most
large-scale HPC applications use the message-passing interface
(MPI) [32] to communicate among tasks. If a faulty task hangs,
tasks that communicate with the faulty task will also hang during
point-to-point or collective communication that involves the faulty
task. These tasks will also cause other non-faulty tasks to hang,
leading the application to an entire hang.

Previous work [9] proposed the notion of progress of tasks
as a useful model to diagnose hangs and slowdowns. Intuitively,
progress is a partial order for tasks, based on how much execution
a task has made in relation to other tasks. The notion of progress
is useful in parallel debugging because the least-progressed (LP)
tasks1 often contains rich information of the root-cause (i.e., the
task where the error originated). Thus, traditional debuggers can be
used to inspect these LP tasks in more detail.

Several static and dynamic techniques to identify LP tasks at
large scales exist. However, they largely suffer fundamental short-
comings when they are applied to HPC applications. The most rel-
evant dynamic technique is AUTOMADED introduced by Laguna
et al. [29]. It draws probabilistic inference about progress based
on a coarse control-flow graph, captured as a Markov model, that
is generated through dynamic traces. However, if two tasks are in
the same loop, but in different iterations when a fault occurs, AU-
TOMADED may not accurately determine which task is progress-
dependent on which other task. This is a fundamental drawback,

1 Since progress is a partial order more than one task can be considered least
progressed. In the following we refer to this set of tasks as LP tasks.

as most HPC applications spend most of their execution time in
loops [14]. For example, in scientific applications, a common use
of HPC, there is typically a large outer loop, which controls the time
step of the simulation, and within it, there are many inner loops, of-
ten with deep nesting levels. Thus, AUTOMADED may fail to infer
progress dependencies for a large number of fault cases in HPC
applications, as we show empirically in Section 5.2.

A similar approach is the Stack Trace Analysis Tool (STAT),
which was introduced by Ahn et al. [9]. STAT relies on static anal-
ysis and uses the concept of temporal ordering, which creates a
partial order among tasks representing their relative progress in
the logical execution space, even within a loop. To identify the LP
tasks, users simply select the first task in the temporal-ordering list.
The temporal-ordering feature of STAT, called STAT-TO, builds
def-use chains to identify Loop Order Variables (LOV) and uses
them to determine relative progress among tasks in different iter-
ations of the same loop. However, there are constraints on when
an LOV can be identified by STAT-TO. For example, they must
be explicitly assigned in each iteration and must increase or de-
crease monotonically; thus, a simple while loop that iterates over
a pointer-based linked list may not have an LOV. We show this ef-
fect empirically for a variety of applications, in Section 5.2. Even
in the cases where an LOV can be identified, the overhead of static
analysis needed for their identification is prohibitive for complex
loops as an interactive tool.

In this paper, we present PRODOMETER
2, a novel loop-aware

progress dependency analysis tool that can accurately determine
progress dependence and, through this, identify the LP tasks, even
in the presence of loops. It is implemented purely as a run-time
tool and uses the main building blocks of AUTOMADED: It keeps
track of per-task control-flow information using a Markov model.
States in the model are created by intercepting MPI calls, and
represent code executed within and between MPI calls. At any
arbitrary point in the execution, PRODOMETER can recreate the
partially ordered set of progress that each task in the application has
made. It sidesteps the problem of STAT by avoiding static analysis,
allowing us to keep track of the progress of a task in a highly
efficient way. To achieve scalability, as in AUTOMADED, we trade
off the granularity at which progress is measured—it is not done at
the line-of-code granularity, but for a block with multiple lines of
code.

In particular, we make the following contributions:

• A highly accurate novel run-time technique that compares the
progress of parallel tasks in large-scale parallel applications in
the presence of loops

• An evaluation of accuracy, precision, and performance of our
technique against the two state-of-the-art approaches (i.e.,
STAT-TO and AUTOMADED) via fault injection in six bench-
marks

• A case study that shows our proposed technique can signifi-
cantly aid in localizing a bug that only manifested in a large-
scale production environment

Our fault-injection experiments on six representative HPC
benchmark programs shows that PRODOMETER achieves 93% ac-
curacy and 98% precision on average, and that this is 45% more
accurate, 56% more precise, and more time-efficient than existing
approaches. Our overhead evaluation suggests that the instrumen-
tation overhead of PRODOMETER slows down the target programs
between a factor of 1.29 and 2.4, and its per-task memory overhead
is less than 9.4MB. Further, our scalability evaluation shows that
its analysis itself is also highly efficient and scales logarithmically
with respect to the number of tasks, up to 16,384 MPI tasks. Fi-

2 PRODOS is Greek for progress and METER is measure.

PDG

Task: 100

Iter: 5

Task: 99,101

Iter: 5

Task:

0-98,102-400

Iter: 6

Sample source code

Figure 1. Iterative solver with 400 MPI tasks. Tasks are inside an
outer while loop. Task 100 has progressed the least. Other tasks
form two groups and waiting for task 100.

nally, our case study demonstrates that PRODOMETER significantly
helped diagnosing an MPI bug that affected a large-scale disloca-
tion dynamic simulation.

The rest of the paper is organized as follows. Section 2 provides
a motivating example and discusses the need for accurate loop-
aware analysis. Section 3 presents the overview and approach of
our solution. Section 4 describes implementation details. Section 5
presents the results of our evaluation and a case study. Section 6
surveys related work. Finally, Section 8 concludes.

2. Need For Accurate Loop-aware Analysis

We detail the significance of progress dependencies as a scalable
and powerful debugging idiom, as well as critical gaps in the state-
of-the-art techniques that can infer them.

2.1 Progress Dependencies as a Scalable Debugging Marker

In the message-passing paradigm, parallel tasks progress in a
highly coordinated fashion. They explicitly exchange messages to
send or receive data relevant to their computation, and the need for
matching sends and receives in point-to-point communication and
collective communication calls point to the requirement of tight
coordination needed for progress. For example, receivers cannot
make progress until senders complete the matching send operation.
This causes the progress of some tasks (e.g., receivers) to become
dependent on other tasks (e.g., senders).

The ability to analyze such progress dependencies provides
significant insight into the origin of many types of errors. Any error
that disrupts the orderly progress plan of an application can reveal
important clues, and thus resolving dependencies can point to the
task containing the root cause.

We use Figure 1 to elaborate on this point. The code first ex-
changes a set of local data (e.g., ghost cells) with neighbor tasks
using MPI Isend and MPI Irecv, non-blocking point-to-point
communication calls, and then gathers computed data from all
tasks and distributes the combined data back to all tasks through
MPI Allgather, a collective call. As many scientific codes model
scientific phenomena over time (e.g., modeling the evolution of dis-
location lines in a structure), this code iterates this computational
step using the while loop to advance physical time steps.

Figure 1 highlights the source lines at which tasks are blocked
when a single task encounters a fault (e.g., an infinite loop), show-
ing its global impact. Specifically, task 100 triggers a fault right
before executing MPI Irecv and this causes its neighbor tasks 99
and 101 to form a group and to wait in MPI Waitall for task 100
to complete. Meanwhile, the majority of tasks complete this loop
iteration, and wait in MPI Allgather, which cannot complete until
the other delayed tasks can join.

Figure 2. Markov model creation: MPI calls are intercepted and
.Enter, .Exit nodes are added to the MM using the call stack
before and after the actual PMPI calls. Computation and communi-
cation(corresponding to MPI library calls) edges alternate showing
transition probabilities along them.

In general, a fault often causes tasks to form a wait-chain among
them due to their natural progress dependencies, which eventually
manifests itself as a global hang or deadlock. It is desirable to
detect such conditions and to infer the dependencies automatically.
Indeed, the graph on the right in Figure 1 shows that at the root of
the corresponding progress dependencies lies the faulty task.

While the number of tasks in an application increases exponen-
tially, the number of MPI calls, where tasks are stuck, is often lim-
ited. This is mainly because MPI programs are written often in a
single program, multiple data (SPMD) style, which causes them to
progress in an almost lock-step fashion through the same code seg-
ments, limiting the number of possible state combinations across
tasks. The same holds for most multiple program, multiple data
(MPMD) codes, since they are typically composed from only a
small number of different programs, which are themselves SPMD.
As a consequence, tasks often wait at a limited number of states,
and those at the same state form a progress-equivalence group,
which can be used as a scalable debugging marker.3

2.2 Markov Models as a Scalable Summary of Execution

Identifying and exploiting progress equivalence groups requires a
representation of parallel program-control flow. Traditional control-
flow graphs (CFGs) capture the execution flow of instructions ei-
ther statically or dynamically. For MPI applications, however, con-
trol paths that capture multiple tasks and the dependencies among
them, generally (except for simple programs) cannot be generated
through static analysis, since the analysis of matching messages is
infeasible in the general case. In contrast, CFGs created through
dynamic analysis are based on the history of executed instructions
and therefore implicitly capture all matched messages accurately.
Nevertheless, large-scale and long-running applications can pro-
duce very large CFGs [7], presenting scalability challenges.

To overcome these challenges, Laguna et al. [29] used Markov
models (MMs) as a compact, scalable summary of the dynamic
execution history. They create states in the MM by intercepting
each MPI function call, and by capturing the call stack before and
after the actual call to the underlying MPI runtime (through an
PMPI function call). Edges between the states (i.e., nodes) repre-
sent control-flow transitions through two types of code: (1) com-

3 A more formal definition of progress dependency can be found in [29].

munication code (executed inside MPI calls), and (2) computation
code (executed between two adjacent MPI calls), as depicted in
Figure 2.

In addition, a transition probability is tracked on each edge. This
probability represents the fraction of times a particular edge is tra-
versed (out of the total number of transitions seen from that state).
For example, nodes with only one outgoing edge will always transi-
tion to the next node pointed to by the outgoing edge: the transition
probability is 1.0; nodes with multiple outgoing edges can have
different probabilities in choosing a next node for a transition, and
this depends on the previous observations. This approach provides
a compact abstraction of the CFG on each nodes and can be cap-
tured even for long-running applications. Further, it can be used in
subsequent steps for a scalable cross-node aggregation by forming
equivalence classes of MMs.

2.3 Loops Hamper Accuracy of Dependency Analysis

Laguna et al. [29] used a path probability-based approach to re-
solve progress dependencies. If tasks are stuck in control-flow
states Si and Sj , they calculate probability of going from Si → Sj

as forward-path probability (Pf) and probability of going from
Sj → Si as backward-path probability(Pb). If Pf > Pb, then they
conclude that it is highly likely that tasks at Si eventually reach Sj

(based on the execution history seen so far). Therefore tasks at Sj

are more progressed than tasks at Si. In other words, tasks at Sj are
progress-dependent on tasks at Si.

The major drawback of this approach is, however, that such in-
ference does not work well in the presence of loops. For example,
in Figure 2 the forward-path probability from the state correspond-
ing to MPI Allgather to the state corresponding to MPI Irecv is
1.0 (because every task in the former eventually reaches the latter).
The backward-path probability from state B to state A is either less
than 1.0 (i.e., some tasks eventually exit the loop) or equal to 1.0 (a
hang arises before any task exits).

In the first case, the probability-based approach will infer that
tasks at MPI Irecv are waiting for tasks at MPI Allgather.
Clearly, this is incorrect because tasks at MPI Allgather have
already passed MPI Irecv and are waiting at the collective in the
next iteration. In the second case, probability-based approach will
not be able to infer any dependency.

Loops are very common in real-world applications, ranging
from the main time-step loop to many internal computation loops.
Thus, we need a highly accurate and scalable analysis technique
that can resolve dependencies even in the presence of loops.

3. Approach

To address the challenges laid out above and to go beyond the short-
falls of current tools, we designed and implemented PRODOME-
TER, a highly accurate and scalable analysis tool that can resolve
dependencies even in the presence of loops. It detects the least-
progressed (LP) tasks and uses them to pinpoint the tasks where
a fault is first manifested. For its analysis, it builds a dynamic
progress-dependency graph (PDG), which gives insight into the
progress relationships of all MPI tasks, by first creating space-
efficient, per-node Markov models (MMs) capable of abstracting
long-running executions, and then grouping them into progress-
equivalence groups for scalability.

Figure 3 gives an overview of the PRODOMETER’s workflow.
Programmers link PRODOMETER, e.g., by preloading its shared li-
brary, to their MPI application (Step 1 in the figure). In Steps 2
and 3, PRODOMETER monitors the application at run-time and cre-
ates an MM for each task. The MM creation is fully distributed (i.e.,
no communication is involved). During the execution, PRODOME-
TER uses a helper thread in each task to detect hangs: when this
thread detects inactivity in the main application thread (i.e., it does

Figure 3. Workflow of PRODOMETER

not see any state transition in a configurable amount of time), it
signals a fault, which triggers its analysis including the creation of
the PDG (Step 4). Finally (Step 5), PRODOMETER allows users to
visualize the PDG, the LP tasks, call stack trees, and annotations
on the source code where different tasks are waiting.

3.1 Markov Model Creation

PRODOMETER uses MPI wrappers to intercept calls to MPI func-
tions. Within each wrapper, it identifies the MPI call as well as the
computation since the previous MPI call using the call stack ob-
served at that point and adds each of two states to the MM, if they
are not yet present. In this case, it also assigns an integer identifier
to the newly created state in increasing order. Thus, this identifier
represents the order in which different states are created.

While a traditional MM only keeps transition probabilities on
edges [29], this model cannot capture loop iteration information.
Therefore, PRODOMETER augments the MMs to keep track of
inter-state transition counts. A transition count captures the number
of times a transition between two states in MM has been observed.

Since the density of calls to MPI functions in the code is rea-
sonably high in most applications, our technique provides appro-
priate granularity for localizing a problem in the code region. For
the applications where MPI call density is low, a binary instrumen-
tation technique could be used to insert additional markers. At each
marker, the corresponding wrapper will insert a state in the MM
increasing the granularity of diagnosis. This technique does come
with some run-time overhead, but users can control it by choosing
an appropriate sampling rate.

3.2 Concept of Progress

To infer progress dependencies, our algorithms treat each MM as
a coarse representation of a dynamically generated control-flow
graph. Thus, we assume that loop properties, such as entry and
exit nodes, backedges, and domination [10] also apply to our MM
analysis. In particular we assume: (1) a loop has an entry and an exit
node; (2) a node x dominates node y, if every path of directed edges
from the start node to y must go through x [16]; (3) a loop has a
backedge (identified as an edge whose head dominates its tail), and
(4) a loop with a single entry node is called reducible [11].

Next, we define the concepts of loop-nesting order, and relative
progress, which we use later for our algorithms.

Loop-nesting order. Let Lx and Ly be two loops in an MM.
Let Nx and Ny be the sets of nodes that belong to Lx and Ly ,
respectively. A loop-nesting order exists between Lx and Ly if
Ny ⊂ Nx, i.e., all nodes in Ly also belong to Lx. Then, we call Lx

has higher loop-nesting order than Ly , Lx > Ly . Intuitively, Lx is
the outer loop in a loop nesting.

Relative progress. Let two tasks T1 and T2 be at node i and j in
an MM. If i and j are not inside a loop then T2 has made more

progressed than T1 if there is a path from i to j (i.e., it is possible
that T1 can reach T2 by following a sequence of forward edges)
but not vice versa. If i and j are inside a nesting of loops then T2

has made more progress if loop-nesting order exists between these
loops and T2 has made more transitions along a path in the outer
loops. Let L1, .., Li, Lj , .., Ln be n nested loops, where Li > Lj .
Let t1i denote the number of transitions made by task T1 along loop
Li. Then, T2 is more progressed than T1, T1 � T2, iff t1i < t2i
and t1k = t2k∀k < i or t1k = t2k∀k ≤ n, i.e., the lexicographical
order between t1k and t2k∀k ≤ n.

Intuitively, we compute relative progress in a nesting of loops
by first comparing the number of transitions made in the outermost
loop, if equal, comparing the next inner loop, and so on.

Ahn et al. [9] showed that relative progress is a partial order
because it is reflexive (Ti � Ti∀i), antisymmetric (Ti � Tj

and Tj � Ti ⇒ Ti = Tj∀i, j) and transitive (Ti � Tj and
Tj � Tk ⇒ Ti � Tk∀i, j, k). If relative progress cannot be re-
solved between two tasks, we call the tasks incomparable. Such
tasks would be executing in two separate branches in the MM. For
example, relative progress order between two tasks stuck in distinct
branches (e.g., if and else branches) of a conditional statement can-
not be resolved, unless they are inside a loop and have completed
different iterations in that loop.

3.3 Iteration Counts in Markov Model

We define the iteration count of a loop as the number of transitions
a task has completed—i.e., it has traversed the backedge to the
loop-entry point—along only that loop. Due to loop nesting, an
edge belonging to a loop in an MM can also be shared by other
loops. Our tool keeps track of the number of transitions along MM
edges and from this, it derives the number of iterations of a loop
that have been executed thus far.

Let ti denote the number of transitions made by the program
along edge ei in the MM. If there are n loops l1, .., ln which share
this edge, and if we denote ICk as the iteration count for loop lk,
then for the backedges, ti =

∑

n

ICk, i.e. the transition count along

a backedge is the summation of all the iteration counts of the loop
nesting surrounding that edge. But, for an iteration in progress (not
completed yet), the edges on the forward path of the loop will have
one extra transition making the transition count greater than the
summation of ICs. Thus in general we can write ti ≥

∑

n

ICk.

Characteristic edge. We define the characteristic edge of a loop
as the edge that is not part of any other loop. Therefore, the tran-
sition count on that edge accurately represents the iteration count
of that loop. Let El be a set of all edges ei which constitute loop
l. Each edge might belong to more than one loop. Thus, a char-
acteristic edge ek of a loop x will be such that ek ∈ Ex and
ek /∈ Ex ∩ Ey : ∀y 6= x. In 3.4.2 we discuss how can we identify
a characteristic edge for all practical loops.

Figure 4. Aggregation of models: We aggregate MMs of individ-
ual tasks into a single (global) model by a reduction that uses a
binomial-tree algorithm. Transition counts on the edges are also
combined.

3.4 Analysis Step: PDG Creation

Definition. A progress-dependency graph (PDG) represents rela-
tive dependencies that prevent tasks from making further execution
progress in case of a fault [29]. The graph shown in Figure 1 is an
example of PDG which shows two task groups (99 and 101, and all
the others) being dependent on task 100. Thus in a PDG, the nodes
corresponding to LP tasks will be the nodes that have no further
dependencies on other tasks and hence no outgoing edge.

To create such a PDG, we first need to resolve relative progress
between different tasks through the following steps.

Aggregation of models. After a fault is detected, PRODOMETER

begins the analysis step. PRODOMETER gathers all MMs from each
task into the root task (rank 0) and creates an aggregated MM. This
is done by a custom reduction operation, using individual models
as input. We use an aggregated model, instead of using distributed
models, because it gives us a global picture of all the states in
which the MPI tasks are in and the history of control-flow paths of
each task. Figure 4 shows how the aggregation algorithm creates a
single MM at the root-task by combining all the states and edges of
individual MMs from each task. In this figure first Task-0 and Task-
2 combines MMs from Task-1 and Task-3 respectively by using the
union of all the states and edges of 2 participating tasks. In the next
step, Task-0 or the root task follows similar procedure to combine
MM from Task-2 with its own MM to create the final aggregated
MM. MM aggregation allows PRODOMETER to identify loops that
could not be identified by looking at individual MMs. For example,
two tasks might observe partial paths between two states in their
MMs, while a global picture might reveal the existence of a loop
when their per-task paths are combined.

All edges in the aggregated MM are annotated with transition
probabilities and counts along with the unique identifier of the
corresponding task. After the aggregation, if a state s has k outgoing
edges and Ti represents the transition count for ith edge, which
connects to next state r, we calculate the transition probability from
state s to state r as Ti/

∑
k
Ti.

We keep raw transition counts corresponding to each task for
subsequent analysis. To achieve scalability, instead of using a linear
buffer to store transition counts for each task, we group the tasks
based on transition counts—on each edge of the aggregated MM,
we store unique transition counts as the key in a compact task list.
To represent consecutive MPI ranks in a group, we use ranges of
values. Thus, each entry in this representation (i.e., a table) are the
tasks that have seen the same number of transitions along that edge,

Figure 5. Tasks are grouped based on transition counts and stored
in a scalable manner on each edge. Markov model is compressed
to keep only useful information about control flow structure and
equivalence states.

as shown in Figure 5. This approach makes our tool scalable; it
greatly reduces the memory footprint because the number of task
groups is far fewer than the number of tasks. This is because the
tasks, large in number as they are, are found to be waiting in only
a few places in the code. In practice, we have found the size of this
table to be in the order of tens for an application with hundreds of
thousands tasks.

Equivalence states. When a fault occurs, multiple tasks may be
in the same state in the MM (i.e., they are executing the same
code region). This behavior is due to the SPMD nature of MPI
applications, and it simplifies our problem—it naturally creates
equivalence states. Our analysis deals with equivalence classes
of tasks rather than each task individually. An equivalence MM
state and a set of iteration counts over all of the containing loops
uniquely define a progress-equivalence group of tasks.

3.4.1 Compression

We eliminate unnecessary states from the MM before the analysis.
An MM can have a large number of states because the same MPI
call can be made from multiple different calling contexts. However,
not all states and edges are interesting from the point of view of
progress-dependency analysis. We are only interested in identifying
progress dependencies between the equivalence MM states. Even
though this step is not necessary for loop aware analysis, using it
makes the algorithm scalable.

The compression algorithm works as follows. First, we replace
all small loops with a single state. Small loops contain only two
states, with a cycle between them, and they are created mainly
by send/receive operations. Second, we merge consecutive linear
chains of edges (i.e., sequence of edges with transition probability
of 1.0) into a single edge. As shown in Figure 5, states between 1
and 4 were compressed after eliminating small loop between states
2 and 3. In all cases, the algorithm keeps consistent the transition
probabilities of the entire MM—the sum of probabilities along all
outgoing edges of a node is 1.0. But while doing the compression,
PRODOMETER preserves all of the equivalence MM states and all
loop structures containing them. For example, in Figure 5 it does
not compress away states 6 and 7 because there are different groups
of tasks which are waiting in these states.

3.4.2 Progress Dependency Analysis

The algorithm for resolving progress dependency can be divided
into two cases: (1) when two equivalence states are inside some
loop(s), or (2) when they do not share any common loop. For case

Figure 6. Categories of loops. MPI x denotes any MPI call.

(2), PRODOMETER simply uses the algorithm in Laguna et al. [29].
For two equivalence states Si and Sj , it first calculates transitive
closure. Then for each path in closure it calculates forward and
backward probabilities between those two states using transition
probabilities present in the MM. It resolves the final dependency
based on which one of these is higher. In the rest of this section, we
describe how PRODOMETER resolves dependencies in case (1), our
primary contribution. Algorithm 1 shows the overall procedure.

Algorithm 1 Progress dependency analysis

Input: mm: Markov model

statesSet: set of equivalence states where tasks waiting

Output: matrix: adjacency-matrix representation of PDG

1: procedure PDGCREATION

2: mm← COMPRESSGRAPH(mm, stateSet)
3: allLoops← IDENTIFYALLLOOPS(mm)
4: mergedLoops← MERGELOOPS(allLoops)
5: for all pair (s1, s2) in statesSet do

6: loopSet ← GETCOMMONLOOPS(s1, s2)
7: if loopSet 6= empty then

8: d← LOOPBASEDDEPENDENCY(loopSet, s1, s2)
9: else

10: d← PROBABILITYBASEDDEPENDENCY(s1, s2)
11: end if

12: matrix[s1, s2]← d

13: end for

14: end procedure

15: procedure GETCOMMONLOOPS(s1,s2)
16: loopSet1 ← GETLOOPSWITHNODE(s1) //loops containing s1
17: loopSet2 ← GETLOOPSWITHNODE(s2) //loops containing s2
18: return loopSet1∩ loopSet2 //return intersection:loops shared by s1 and s2
19: end procedure

Loop identification. PRODOMETER uses the Johnson’s algo-
rithm [26] to identify all loops in the compressed MM. This al-
gorithm finds all the elementary circuits in a directed graph and
runs in time bounded by O((n + e)(c+1)), where MM has n states,
e edges and c loops. Internally, PRODOMETER uses a hash func-
tion to create an integer representation of the loop. The input to
the hash function is an ordered list of the states that constitutes the
loop. This integer-based representation helps PRODOMETER use
faster comparisons and lookups for subsequent analysis, than if we
were to use a string representation of the states.

Finding common loops. To compare two states, PRODOMETER

first finds the set of loops that contain those states. Then, it uses
our loop-aware algorithm to resolve progress dependency. If there
are no common loops that contain those states, it applies case (2),
as stated above. Note that HPC applications typically have multiple
nested loops, which could also create a nesting of loops in the MM.

Algorithm 2 Loop aware progress dependency analysis

Input: s1, s2: Two equivalence states being compared

loopSet: Set of loops containing those two states

Output: Dependency relation between s1, s2 [x
d
−→ y implies x depends on y]

1: procedure LOOPBASEDDEPENDENCY(loopSet, s1, s2)
2: orderedLoops← GETLOOPNESTINGORDER(loopSet) //sort loops
3: for all loop in orderedLoops do

4: ic1← GETITERATIONCOUNT(s1, loop)
5: ic2← GETITERATIONCOUNT(s2, loop)
6: if ic1 > ic2 then

7: return s1
d
−→ s2

8: else if ic1 < ic2 then

9: return s1
d
←− s2

10: end if

11: end for

12: /* Here s1,s2 are in the same iteration for all the loops /*
13: outerLoop← orderedLoops.first //use only outer loop to break tie
14: return DISTANCEBASEDDEPENDENCY(outerLoop, s1, s2)
15: end procedure

16: procedure DISTANCEBASEDDEPENDENCY(outerLoop,s1,s2)
17: entry ← GETLOOPENTRY(outerLoop)
18: dis1← GETDISTANCEFROMLOOPENTRY(entry, s1)
19: dis2← GETDISTANCEFROMLOOPENTRY(entry, s2)
20: if dis1 > dis2 then

21: return s1
d
−→ s2

22: else if ic1 < ic2 then

23: return s1
d
←− s2

24: end if

25: end procedure

26: procedure GETITERATIONCOUNT(s,loop)
27: taskSet ← TASKSWAITINGAT(s) //tasks waiting at this equivalence state
28: ic← 0
29: backEdgeSet ← GETBACKEDGES(loop)
30: for all backEdge in backEdgeSet do

31: ic← ic + GETTRANSITIONCOUNT(backEdge, taskSet)
32: end for

33: return ic
34: end procedure

Loop merging. Different loops in the aggregated MM appear de-
pending on when MPI calls are made in the source code, as Fig-
ure 6 illustrates. Our approach assumes that loops are reducible [11]
(which implies that the code does not use “goto” statements, for ex-
ample). Figure 6 shows the basic loop categories that PRODOME-
TER can handle.

In our survey of multiple HPC benchmarks and from our experi-
ence with scientific applications, we observed that most (non-goto)
loop structures found in HPC applications are composed of these
basic loop categories. For example, if PRODOMETER encounters
a complex loop-nesting structure in the MM, it breaks it down to
simpler structures, and tries to map each structure to one of these
basic categories.

PRODOMETER uses purely dynamic analysis. As a result, it ini-
tially detects multiple loops in the MM corresponding to a single
source-code loop. For example, in Figure 6, for Type-3, PRODOME-
TER initially determines one loop as 1 - 2 - 4 - 1 and a separate loop
as 1 - 3 - 4 - 1. Iteration counts in these initially separated loops do
not provide a complete picture and cannot be used to resolve rela-
tive progress. For example, an if-else statement inside a loop might
appear as two separate loops in MM. To resolve relative progress
between two tasks, one of which took the if path and the other one
else path, we compare their iteration count in the actual source-code
loop, which encloses the if and the else path.

PRODOMETER identifies different loops created from a single
source-code-level loop and merges those to create a single loop
which represents the original source-level loop. Assuming a re-
ducible MM, each loop has only one entry point [16]. Therefore,
we consider all loops with the same entry point as a single loop.

The only category of loops that creates ambiguity is Type-5. As
shown in Figure 6, such MMs might be created either from a single
loop through if-continue statements, or from two nested loops. But
due to the SPMD nature of MPI applications, we do not need to
distinguish between these two cases for our analysis.

Identifying characteristic edges. Due to nesting, most of the
edges in an MM belong to multiple loops. Thus, a transition count
on those edges corresponds to a combined total count of many dif-
ferent loops. This problem can be solved by solving a system of
linear equations and inequalities. The unknown quantities of these
equations would be the iteration counts of various loops, and the
known quantities would be the transition counts of various edges.
However, for practical applications, solving the system of linear in-
equalities is a computationally expensive procedure for a dynamic
tool. PRODOMETER avoids this expensive solution by a simple ob-
servation: A loop makes a transition along the backedge(s) when it
completes one iteration. Also the backedge of a loop is not shared
with any other loop, after loop entry-point based merging has been
done as described above. For loops with a single backedge (Types
1,2, and 3), the transition count along the backedge correctly repre-
sents the iteration count of the loop. Thus, a backedge satisfies all
the properties of a characteristic edge discussed before.

An exception is the case when loops have multiple backedges
(Types 4, 5). In these cases, instead of considering a single
backedge, we consider the combination of backedges as the char-
acteristic edge and use it to find the iteration count of the loop.
Then the iteration count of the loop becomes

∑
Tbi where Tbi is

the transition count on ith backedge.

Lexicographic comparison. Our tool resolves relative progress
between two tasks inside a complex nesting of loops by comparing
iteration counts in the lexicographic order (i.e., in the order from
outer to inner loop). This is important because there might be
cases where, between two tasks inside a 2-level nesting, one task
has completed more iterations on the inner loop while the other
made more progress in the outer loop. In this case, we assume
that the task with more iterations on the outer loop has made
more overall progress. To identify outer and inner loop in an MM,
PRODOMETER considers the loop whose entry state dominates the
other. This can be simply checked using state identifiers assigned
to each state. Entry-point of the outer-loop will always be created
before the inner loop and therefore will have a smaller identifier.

Distance-based comparison. In some situations, two equivalence
MM states may have the same iteration count for all nesting levels
of loops. Then, PRODOMETER uses a hop-count distance from the
loop entry-point as the metric for progress, i.e., the number of
edges traversed between the entry-point of the loop and the current
state. A state that has a higher value of the hop-count distance is
more progressed than one with a lower value. Algorithm 2 formally
describes the loop-aware analysis procedure.

Finally, a PDG is created from these pairwise dependencies
between equivalence MM states. In a PDG, a directed edge goes
from a more-progressed state to a less-progressed state showing
their relative dependencies. Note that a state can contain multiple
tasks, all of which are currently waiting in that state. A PDG is a
graphical representation of the partial order.

4. Implementation

PRODOMETER is implemented in C++ as an extension to AU-
TOMADED’s framework [29]. We implemented and tested it on
x86/Linux and IBM Blue Gene/Q architectures, although the de-
sign is portable to any MPI-based parallel platform. The source
code for PRODOMETER is available at [4] as part of the Au-
tomaDeD project. In this section we discuss implementation-

related aspects, in particular how we aggregate MMs in a scalable
manner, how we detect faults, and how users can easily visualize
the LP tasks.

4.1 Scalable Reduction of MMs

We implement a scalable binomial-tree-based algorithm, which
merges MMs from individual tasks in O(log(p)) time, where p is
the number of tasks. We cannot use MPI Reduce to combine MMs
because tasks can contribute states of different sizes. Since we keep
an integer representation of each state, we can easily map states
from different tasks into a state in the aggregated MM with efficient
integer-based comparison. The merged MM contains a union of all
states and edges, and thus can handle the case where individual
MMs differ from one another. Figure 4 depicts this logarithmic
reduction technique using an example of 4 tasks.

4.2 Fault Detection

Fault detection is orthogonal to our root cause detection in PRODOME-
TER. It can be combined with any technique available by the target
platform or can even be done in cooperation with the applica-
tion. By default, we include a platform and application-independent
heuristic based on a timeout mechanism. For this we use a helper
thread per task that monitors the application to determine if a hang
has occurred. The thread caches a sequence of the last N states that
the application has seen. Each time it sees a state, it checks if the
state is present in the cache. If it is not, it resets a timer and inserts
that state into the cache. As a result, if it does not encounter a new
state for a long time and only repeatedly cycles through the states
in the cache, then the timer expires and it signals a fault.

Our default technique can detect hangs arising from deadlocks,
livelocks, and slow code regions. PRODOMETER can infer a reason-
able timeout threshold from the mean and standard deviation of pre-
vious state transitions in the MM. Users can also provide a timeout
period to account for special application characteristics. We have
found in practice that a period of 60 seconds is good enough to
detect a fault in most of the applications. Cache size N is a config-
urable parameter and depends on application characteristics. A low
value of N decreases the coverage of the fault detection whereas a
large value might trigger false alarm for large loops. We found a
value of 10 works reasonably well for real applications.

4.3 Determination of LP Tasks

PRODOMETER computes the LP tasks from the PDG, by identify-
ing the nodes that do not have any progress dependency, i.e., nodes
with no outgoing edges in the PDG. If it finds more than one such
node, PRODOMETER uses point-to-point message send information
to reduce this list. For example, if it currently has both nodes i and
j in the set of LP tasks and the MPI trace contains a point-to-point
message from i to j, but not vice-versa, it discards node j from the
LP task set due to the observation that node j expects a message
from node i.

4.4 Visualization

After the analysis, PRODOMETER opens a graphical interface to
visualize the PDG as a graph. The LP tasks are highlighted with
different colors. It also marks if the bug was identified in a commu-
nication node or computation node with different shapes of nodes.
Users can interact with the graph by selecting one or multiple
nodes, which will show a parallel stack tree of call-graphs and
highlight corresponding lines in a source code viewer.

5. Evaluation

In this section, we show accuracy and precision of PRODOMETER

using controlled experiments, followed by a real world case study.

5.1 Setup of Controlled Experiments

To evaluate the effectiveness of PRODOMETER, we set up con-
trolled experiments in which we dynamically inject faults into ap-
plications, and measure its precision and accuracy in identifying
the task that was injected. We compare our results to two existing
state-of-the-art techniques, STAT-TO and AUTOMADED.

We implement the fault injection using the binary instrumenta-
tion library PIN [3] and use it to randomly inject an infinite loop
as the fault at runtime. To cover a wide range of HPC application
patterns, we choose three applications (AMG, LAMMPS and IRS)
from the Sequoia procurement benchmark suite [5], a widely stud-
ied proxy application (LULESH [2]), and two programs from the
NAS parallel benchmark (BT and SP), totaling six programs.

As commonly found in real-world HPC applications, most of
these benchmark programs have two distinct simulation phases: a
setup and a solver phase. During the setup phase, they generate
their basic data structures, e.g., a mesh, and distribute the input
data across MPI tasks. Once done, they move to the solver phase
where the tasks start to iterate through a time-step or solver loop
and solve the given problem. While production applications spend
most of their simulation time in their solver phase [15], these
benchmark programs can spend a relatively large portion of time
in the setup phase, due to relatively small input data set sizes as
well as artificially reduced iteration counts, which makes them
more suitable for experimentation and procurement testing while
not changing the computational characteristics in each phase. To
compensate for this bias, we inject faults only into the solver phase.

We first run each of these programs under PIN and profile
all functions invoked in its solver phase. We filter out function
calls from within well-known libraries, like libc, MPI and math
libraries, to capture the fact that faults are more likely to be in the
application than in these well-known and widely tested libraries.

We then randomly select various parameters to make our fault
injection campaign statistically fair. Of all unique functions found
in the profile, we randomly select 50 functions, and then pick one
invocation of one of these functions for injection—this ensures we
inject a fault into a random iteration of a loop. Similarly, we select
one task out of all of the MPI tasks as the target for this injection.

Finally, we run these programs at different scales to observe
any scale-dependent behavior of our technique. We use 128, 256
and 512 tasks for the cases, where the programs do not have re-
strictions on the task count to use; for some other benchmarks such
as LULESH, IRS and BT, which have specific restrictions, we use
the closest integers to these counts.

5.2 Accuracy and Precision

We use two metrics to summarize the findings of our controlled
experiments and to quantify the quality of root cause analysis:
Accuracy and Precision. Accuracy is the fraction of cases that a
tool correctly identifies the Least-Progressed (LP) tasks. Precision
is the fraction of the identified LP tasks that are actually where the
fault was injected. Since we inject a fault only into a single task,
ideally PRODOMETER should detect only one task as the LP task.

In the first study we compare PRODOMETER to AUTOMADED.
As mentioned above, AUTOMADED uses a similar approach in
gathering runtime statistics using MMs, but is not capable of de-
pendencies across loop boundaries.

Table 1 summarizes the accuracy results for PRODOMETER

and AUTOMADED. PRODOMETER achieves over 93% accuracy on
average, across all tested programs and scales, and its accuracy is
not affected by scale. Further, the data shows that PRODOMETER’s
accuracy is significantly higher than that of AUTOMADED (64%).
This is mainly because faults are injected into the solver phases
which typically contain many complex loop-based control flows.
Nevertheless, the accuracy of AUTOMADED, which does not have

128 tasks 256 tasks 512 tasks
Benchmarks PR AU PR AU PR AU
LAMMPS 1.00 0.54 1.00 0.48 1.00 0.58
AMG 0.92 0.56 0.94 0.46 0.88 0.67
IRS 1.00 0.50 1.00 0.76 1.00 0.78
LULESH 0.90 0.60 0.90 0.60 0.92 0.56
BT 0.82 0.52 0.84 0.66 0.84 0.68
SP 0.94 0.80 0.92 0.82 0.92 0.82

Table 1. Accuracy: PRODOMETER (PR) vs. AUTOMADED (AU)

128 tasks 256 tasks 512 tasks
Benchmarks PR AU PR AU PR AU
LAMMPS 0.98 0.75 0.99 0.68 0.98 0.47
AMG 1.00 0.89 1.00 0.73 0.99 0.71
IRS 0.96 0.54 0.98 0.67 0.97 0.75
LULESH 0.97 0.46 0.98 0.25 0.94 0.28
BT 0.98 0.67 1.00 0.63 1.00 0.42
SP 1.00 0.87 0.98 0.84 1.00 0.74

Table 2. Precision: PRODOMETER (PR) vs. AUTOMADED (AU)

a special logic to infer progress inside a loop, is not close to
zero, even on those programs with time-step loops governing the
entire solver phase. This can be caused by faults that prohibit the
completion of even a single iteration of the time-step loop. Thus,
from the perspective of the Markov model, the loop was never
entered, and AUTOMADED could infer progress of this region as if
there was no loop. For BT, accuracy of PRODOMETER is relatively
low, which is caused by the use of goto statements inside loops.
Our current loop-detection algorithm is based on finding “natural
loops”, i.e., loops with a single head node and a backedge in the
CFG. The goto statement violates this assumption, and we leave
support for such cases to our future work.

Table 2 shows the summary of the precision results. PRODOME-
TER detects LP tasks with very high precision (above 98% on av-
erage), which means that in most cases, PRODOMETER will point
the developer to a single task, which she can focus on for purposes
of debugging, using standard single process debuggers.

However, we believe that there are fundamental limits to the
precision of any tool that determines progress dependence. This
is because the concept of progress dependency is itself a partial
order, and thus there exist cases where states simply cannot be
ordered. Notably, one cannot resolve the ordering of two tasks that
are executing in distinct branches of a conditional statement, in the
same iteration count. In this case, PRODOMETER may identify both
tasks as LP, which affects precision. PRODOMETER’s mechanism
for determining forward- and backward-paths is probabilistic, and
if the prior observations are not representative enough or large
enough, these introduce errors in the analysis.

Second, we compare the accuracy of PRODOMETER with STAT-
TO, which is, to our knowledge, the only existing tool that is
capable of finding loop dependencies. This is done in STAT-TO
by detecting Loop Order Variables (LOVs) (which govern loops)
via static analysis. Since STAT-TO requires a manual interven-
tion and guidance, we compare the two tools by applying STAT-
TO manually to some of the experiments for which PRODOME-
TER has succeeded. We first randomly select five cases from each
of three benchmark programs (AMG, LAMMPS and LULESH),
which PRODOMETER analyzed correctly using the new technique
(i.e., cases with loops). Manual inspection reveals that the selected
cases involve 1–3 structured loops (e.g., while) for each bench-
mark and 1–3 program points (i.e., a line in a source file) for each
loop. In addition, we find that only a single program point is within
a single loop, while all others are inside triple-nested loops.

Codes Loops Points LOV Secs

AMG

PCG solver 498, i 9.0
Coarsening 595, level 294.1

609,
1183

Coarsening 1221, level 295.6
1292

V-Cycle 237 cycle count 10.5
Main cycle 263, Not found 14.6

335

LAMMPS

Input 187 Not found 4.6
Verlet 206, i 3.6

264
Verlet 206, i 3.6

253
LULESH Time step 2775, Not found 13.17

2776

Table 3. STAT-TO accuracy and performance

Benchmarks Slowdown Memory overhead (in MB)
AMG 2.4 9.4
LAMMPS 1.3 3.67
IRS 1.29 4.7
LULESH 1.44 2.2

Table 4. Slowdown and memory overhead for model creation

Then, we manually apply STAT-TO’s Loop Order Variables
(LOV) analysis to those program points that are contained in a
loop. This represents the static analysis step in STAT-TO, which
is most essential to resolve temporal order of the program points
within loops. Further, STAT-TO requires a set of program points to
be analyzed together for ordering, and thus we apply this analysis
to sets of program points involved in each case. This amounts to
nine distinct sets of LOV analysis runs summarized in Table 3.

In terms of accuracy, this static analysis fully retrieves a LOV
in six out of the nine cases—66% retrieval rate. It completely fails
to identify LOVs for two cases: one in LAMMPS and one in in
LULESH. But for one case—i.e., Main-cycle Loop—where the
program points are included in triple-nested loops, it partially fails
to identify LOVs: it fails to retrieve a LOV for the outermost loop
while successfully identifying LOVs for both of the inner loops. To
complete temporal ordering, however, STAT-TO must fully resolve
all of the loops so we log this case as Not found.

In terms of performance, for all but one case, LOV analysis fin-
ishes its analysis in under 15 seconds, which would be acceptable to
support even an interactive tool like a parallel debugger. However,
for AMG’s coarsening loop, it jumps to 295.6 seconds, a factor 20
larger overhead than other loops. We find that this is due in large
part to the high complexity of this loop, which triggers a longer
static analysis. The def-use table used in STAT-TO exhibits over
one hundred variables defined outside the loop while being used in-
side the loop, and over thousand references to these variables from
within the loop body. Given the complexity of a def-use chain anal-
ysis algorithm, O(N2 ∗V) where (N) is the number of definitions
and uses and (V) is the number of variables, this case has the com-
putation complexity of O(108). This suggests that a static analysis
technique can become unwieldy, as the complexity of target loops
becomes higher.

5.3 Performance and Scalability

Our second set of experiments targets the run-time overhead of
PRODOMETER, in terms of execution time and memory use with
the target programs. We define slowdown as the ratio of times it

512 1024 2048 4096 8192 16384
0

2

4

6

8

10

12

14

16

AMG

Number of tasks

T
im

e
 i
n

 s
e

c
o

n
d

s

512 1000 2197 4096 8000 15625
0

0.5

1

1.5

LULESH

Number of tasks

T
im

e
 i
n

 s
e

c
o

n
d

s

 Aggregation_time

 Analysis_time

 Aggregation_time

 Analysis_time

Figure 7. Scalability of PRODOMETER progress-analysis time

takes for the program to complete with and without PRODOMETER.
Memory overhead is the memory consumed by the tool. Since dif-
ferent tasks can have different memory usage, we use the average
number across all the tasks. Table 4 summarizes the results mea-
sured with 512 tasks for the four largest codes: the three Sequoia
benchmarks and LULESH.

PRODOMETER is a dynamic analysis tool, and its interception of
each MPI call followed by a system call to capture a call path is the
primary reason for the increased run-time overhead. Nevertheless,
the overhead is still reasonable, in particular for a debugging tool,
and—most importantly—small enough to still enable the execution
of full scale applications with realistic input sets. Memory overhead
is a function of the number of unique states and edges in the Markov
model. PRODOMETER stores call-path information in each state,
and keeps track of the number of transitions on each edge.

In this experiment we statically linked the library and used re-
turn addresses from GNU backtrace utility to represent a call-path.
Statically linking ensures that object code is loaded at the same ad-
dresses on all tasks. With dynamic linking, and with static linking
on operating systems that use security features like address space
randomization (typically not used on HPC systems, but default for
many desktop OSs), libraries’ load addresses can vary from task
to task. To properly identify equivalence states across all tasks, we
normalize the addresses in call-paths by representing them as a tu-
ple (M, O) where M is the name of the module or library containing
the address and O is the offset within that library. With the use of
this normalization feature, we have observed slowdowns of up to
4.5x, when libraries are dynamically linked (and on systems for
which this normalization feature is needed). The highest slowdown
occurs for AMG. We plan to address this problem in our future
work by implementing more efficient normalization and by using a
faster stack tracing tool (such as libunwind).

Scalability The final set of controlled experiments evaluates the
scalability of PRODOMETER’s progress analysis itself by measur-
ing model-aggregation and dependency-analysis performance. We
perform this test with AMG and LULESH with up to 16,384 tasks
on an IBM Blue Gene/Q (BGQ) machine. Each BGQ compute
node consists of 16 PowerPC cores with 16GB of RAM, connected
through a custom 5-D torus network. For our scalability test, we in-
ject a fault close to the final execution phase of the programs so that
an analysis must handle the largest Markov model. Our objective is
to evaluate how efficiently PRODOMETER aggregates large Markov
models from a large number of tasks and analyzes this aggregated
model to determine progress dependence.

In testGatherSend->MPI_Allgather

 4071 tasks: [0-4. . .]

In testGatherSend->MPI_Waital l

 8 tasks: [183. . .]

In tes tGatherSend->MPI_Get_count

 13 tasks: [5. . .]

After testGatherSend->MPI_Waital l

 4 tasks: [303. . .]

Figure 8. PRODOMETER on Dislocation Dynamics Reproducer

Figure 7 summarizes the scalability results. Aggregation time
denotes the time it takes for PRODOMETER to aggregate Markov
models gathered from all tasks using a binomial tree-based reduc-
tion technique. Analysis time denotes the time taken to identify rel-
ative progress, to build a progress dependence graph and to identify
LP task(s). Aggregation time increases with scale for both bench-
mark programs, and the trend is logarithmic with the R2 value of
a logarithmic fit (with alog2x + b) is 0.98 for AMG and 0.96 for
LULESH. As for Analysis time, that of AMG increases with scale
while LULESH stays almost constant. In the case of LULESH,
the complexity of the application does not change with scale and
thus the number of states remains constant, while in the case of
AMG the algorithmic complexity grows with scale (e.g., the num-
ber of levels in the multi-grid method increases with scale) and
thus PRODOMETER must handle larger numbers of states at larger
scales. Nevertheless, the worse-case overall time is less than 16 sec-
onds, which is quite tolerable as an automated tool for debugging.

5.4 Case Study: Using PRODOMETER on a Real MPI Bug

A dislocation simulation code recently encountered intermittent
hangs during production runs on our IBM BG/Q machine soon after
our computing facility had rolled out a new driver, which included
a new version of the MPI library. The cause of the problem was
unknown. We observed this issue more frequently at larger scales.
For instance, it almost always showed up for runs with 32,768
tasks. The scientist who was developing this code reported the
issue to a system analyst. He then extracted its control flow and
communication patterns, and put together a highly deterministic
reproducer at a reduced scale.

To help diagnose this issue further, we applied PRODOMETER to
this reproducer. Figure 8 shows the global state PRODOMETER cap-
tured when the reproducer code was hung at 4,096 MPI tasks. The
tool immediately helped us understand the global hang state with-
out overwhelming us, as it expresses the state in a form of progress-
equivalence classes (i.e., nodes). While this program was run at
4,096 tasks, our tool showed the state with only four progress-
equivalence classes with dependencies (i.e., edges) among them.

Clearly, this diagnosis shows the reason for the global hang:
the majority of the tasks (4,071 tasks) were not making progress
because of their dependencies on a small number of tasks (25
tasks). Further, PRODOMETER identified the group that are still in
an MPI communication routine called MPI Get count as the least-
progressed group. With this information, it was likely that the root
cause of this hang would be in the vicinity of the code that these
less-progressed groups were executing.

Given that this reproducer was not hung under the older MPI
drivers, and that it was written simply and in a way to avoid elusive
non-deterministic concurrency or memory bugs, we immediately
suspected a bug in the underlying communication layer itself.

Indeed, using the same reproducer, the IBM software team
quickly discovered a software bug in the communication layer of
their new driver whereby a new collective communication opti-
mization was too aggressive and was causing other concurrent com-
munications to starve. As shown in Figure 8, large numbers of
tasks reached and started MPI Allgather first, and this large-scale
collective communication significantly starved the communication
subsystem of those tasks that were still performing logically ear-
lier point-to-point communications. In fact, the reproducer actually
injects a random delay prior to certain point-to-point calls into a
small number of tasks to induce this condition more frequently.

Manual analysis would have been far more confusing, since
MPI Allgather appears earlier in the source listing. While it is
obvious that this collective call is included in the main time-step
loop in the reproducer code, it is far less obvious in the real case
with the full dislocation dynamics code where this collective call is
buried in a function being called by an upper-routine loop.

6. Related work

Debugging and root cause analysis Debugging is one of the most
crucial and time consuming processes in software development cy-
cle. Traditional breakpoint based debugging with GDB or “print
debugging” is particularly not suitable for large scale parallel appli-
cations. Parallel debuggers such as Totalview [6] and DDT [1] con-
trol multiple processes and aggregate distributed states. However,
identifying the faulty process or finding the matching code location
still requires interactive manual effort. Recent research on semi-
automated statistical debugging has produced tools for sequential
codes [13, 19, 25, 35] that, in the presence of sufficient historical
data, can diagnose the root cause of a bug. Other techniques include
use of boolean SAT and MAX-SAT [27, 34] for detecting program
errors. Even though these techniques are quite promising, it is dif-
ficult to immediately apply those to debug parallel applications
at large scale. Some formal verification based tools [33] and as-
sertion based techniques [20] can overcome scalability challenges
and adapt to parallel applications. However, these tools are mainly
suited for debugging accuracy problems and are complementary to
our approach. Laguna et al. [28] and Mirgorodskiy et al. [30] both
monitor applications timing behavior and identify processes that
exhibit unusual behaviors. DMTracker [22] uses statistical tech-
nique to find bugs in MPI applications by identifying anomalous
data movements. There are other techniques [21, 24] that target
general MPI coding errors and deadlock detection. These tools are
also complimentary to our approach and can be used to detect a
problem and trigger PRODOMETER for further analysis. The clos-
est prior work that follows a similar aspect of relative progress as
PRODOMETER are AUTOMADED [29] and the temporal ordering
extension of STAT [9]. While AUTOMADED suffers from signif-
icant drawback of not being able to handle the common case —
analysis in the presence of loops, STAT’s static analysis based al-
gorithm suffers from extensive static analysis times while building
def-use chain and fails in the absence of loop-order-variables. Our
loop-aware dynamic technique addresses both of these issues.

Loop analysis Loop analysis is an established field in compiler
technology. There are many well accepted algorithms for identify-
ing natural loops in the program and used in compilers for loop-
unrolling [17], tiling [8], resolving dependency between different
variables [16]. These techniques are mainly based on static analysis
of the program and the goal is to improve parallelism and cache be-
havior. Other studies [31] use loop characterization at the hardware

level to improve branch prediction and parallelism. Our goal for
dynamic analysis of loops is fundamentally different. We perform
our loop-analysis on Markov models in-order to extract informa-
tion about iteration count and loop nesting. We then perform lex-
icographical order based comparison to resolve progress between
different groups of tasks.

7. Conclusion

Our novel loop aware progress dependency analysis technique can
diagnose faults in large scale HPC applications with high accuracy.
These are faults, like hangs and performance slowdowns, that are a
dominant class of software problems encountered in HPC applica-
tions. This fully dynamic technique is easy to use and does not re-
quire modifications to the application. Its ability to handle complex
loops and its approach based on runtime analysis makes it more
accurate and precise in debugging complex applications, compared
to existing state-of-the-art techniques [9, 29]. Further, we achieve
high scalability by using Markov models to summarize the appli-
cation’s dynamic control-flow as well as deploying a binomial re-
duction of the models across tasks. Our fault injection study on 4
major applications and 2 NAS parallel benchmarks show that the
least-progressed task identified through this technique can be ef-
fectively used to identify the root-cause, i.e., the faulty task and
corresponding code region. On average PRODOMETER achieved
over 93% accuracy and 98% precision. The case study presented
in this paper shows how this technique was able to diagnose an un-
known non-deterministic bug, reproducible only at large scale, in a
full scale dislocation dynamics simulation code.

Acknowledgments

We thank the anonymous reviewers for their invaluable feedback.
We thank Gregory L. Lee from LLNL for helping us with STAT.
This work was performed partly under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Laboratory
under contract DEAC52-07NA27344 (LLNL-CONF-646258).

References

[1] DDT - Debugging tool for parallel computing.
http://www.allinea.com/products/ddt/ .

[2] Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics
(LULESH).
https://codesign.llnl.gov/lulesh.php .

[3] Pin - A Dynamic Binary Instrumentation Tool.
http://software.intel.com/en-us/articles
/pin-a-dynamic-binary-instrumentation-tool .

[4] PRODOMETER source code.
https://computation-rnd.llnl.gov/automaded/ .

[5] Sequoia Benchmarks.
https://asc.llnl.gov/sequoia/benchmarks/ .

[6] TotalView Debugger.
http://www.roguewave.com/products/totalview.aspx .

[7] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent. Hpctoolkit: Tools for performance anal-
ysis of optimized parallel programs. Concurrency and Computation:

Practice and Experience, 22(6):685–701, 2010.
[8] N. Ahmed, N. Mateev, and K. Pingali. Tiling imperfectly-nested loop

nests. In SC, 2000.
[9] D. H. Ahn, B. R. d. Supinski, I. Laguna, G. L. Lee, B. Liblit, B. P.

Miller, and M. Schulz. Scalable temporal order analysis for large scale
debugging. In SC, 2009.

[10] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Princi-
ples, Techniques, and Tools (2Nd Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2006. ISBN 0321486811.

[11] F. E. Allen and J. Cocke. A program data flow analysis procedure.
Communications of the ACM, 1976.

[12] D. Andrzejewski, A. Mulhern, B. Liblit, and X. Zhu. Statistical
debugging using latent topic models. In ECML, 2007.

[13] M. Attariyan, M. Chow, and J. Flinn. X-ray: Automating root-cause
diagnosis of performance anomalies in production software. In OSDI,
2012.

[14] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations
for high-performance computing. ACM Computing Surveys (CSUR),
26(4):345–420, 1994.

[15] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations
for high-performance computing. ACM Computing Surveys, pages
345–420, Dec. 1994.

[16] U. Banerjee. Loop transformations for restructuring compilers: The
foundations. 1993.

[17] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Optimizing
matrix multiply using phipac: a portable, high-performance, ansi c
coding methodology. In ICS, 1997.

[18] G. Bronevetsky, I. Laguna, S. Bagchi, B. R. d. Supinski, D. H. Ahn,
and M. Schulz. Automaded: Automata-based debugging for dissimilar
parallel tasks. In DSN, 2010.

[19] T. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vaswani. Holmes:
Effective statistical debugging via efficient path profiling. In ICSE,
2009.

[20] M. N. Dinh, D. Abramson, D. Kurniawan, C. Jin, B. Moench, and
L. DeRose. Assertion based parallel debugging. In CCGRID, 2011.

[21] C. Falzone, A. Chan, E. Lusk, and W. Gropp. Collective error detec-
tion for mpi collective operations. Recent Advances in Parallel Virtual
Machine and Message Passing Interface Lecture Notes in Computer
Science, pages 138–147, 2005.

[22] Q. Gao, F. Qin, and D. K. Panda. Dmtracker: Finding bugs in large-
scale parallel programs by detecting anomaly in data movements. In
SC, 2007.

[23] S. Hangal and M. Lam. Tracking down software bugs using automatic
anomaly detection. In ICSE, 2002.

[24] W. Haque. Concurrent deadlock detection in parallel programs. Inter-
national Journal of Computers and Applications, pages 19–25, 2006.

[25] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Understanding and
detecting real-world performance bugs. In PLDI, 2012.

[26] D. B. Johnson. Finding all the elementary circuits of a directed graph.
SIAM Journal on Computing, pages 77–84, 1975.

[27] M. Jose and R. Majumdar. Cause clue clauses:error localization using
maximum satisability. In PLDI, 2011.

[28] I. Laguna, T. Gamblin, B. R. de Supinski, S. Bagchi, G. Bronevetsky,
D. H. Anh, M. Schulz, and B. Rountree. Large scale debugging of
parallel tasks with automaded. In SC, 2011.

[29] I. Laguna, D. H. Ahn, B. R. d. Supinski, S. Bagchi, and T. Gamblin.
Probabilistic diagnosis of performance faults in large-scale parallel
applications. In PACT, 2012.

[30] A. Mirgorodskiy, N. Maruyama, and B. Miller. Problem diagnosis in
large-scale computing environments. In SC, 2006.

[31] T. Moseley, D. A. Connors, D. Grunwald, and R. Peri. Identifying
potential parallelism via loop-centric profiling. In CF, 2007.

[32] The MPI Forum. MPI: A Message Passing Interface.
https://http://www.mpi-forum.org/ , 1993.

[33] A. Vo, S. Aananthakrishnan, G. Gopalakrishnan, B. d. Supinski,
M. Schulz, and G. Bronevetsky. A scalable and distributed dynamic
formal verifier for mpi programs. In SC, 2009.

[34] Y. Xie and A. Aiken. Scalable error detection using boolean satisfia-
bility. In POPL, 2005.

[35] A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken. Statistical
debugging: simultaneous identification of multiple bugs. In ICML,
2006.

http://www.allinea.com/products/ddt/
https://codesign.llnl.gov/lulesh.php
http://software.intel.com/en-us/articles//pin-a-dynamic-binary-instrumentation-tool
http://software.intel.com/en-us/articles//pin-a-dynamic-binary-instrumentation-tool
https://computation-rnd.llnl.gov/automaded/
https://asc.llnl.gov/sequoia/benchmarks/
http://www.roguewave.com/products/totalview.aspx
https://http://www.mpi-forum.org/

